最基础的知识是有最有用的知识,最基本的方法往往是最有用的方法.三基和知识主干都源于教材,回归课本,夯实基础,熟练掌握解题的通性通法,是数学教学最根本的出发点和归宿。
高中数学的重点内容:函数、不等式、数列、几何体中的线面关系、直线与圆锥曲线、向量、概率统计、导数等主干知识,是构成高考试卷的主体,是历年考查的重点.其中,函数是高中数学的核心内容,又是学习高等数学的基础,贯穿于高中数学的始终,运用函数的观点,可以从较高的角度去处理方程、不等式、数列、曲线与方程等问题,这都需要学生掌握基本的数学知识、形成基本的数学技能、能运用基本的数学方法。
2、抓运算和推理能力
数学高考历来重视运算能力,80%以上的分数都要通过运算得到.部分运算能力差的考生至今仍然没有对此有足够重视,而是将运算能力差完全归结于粗心,认为平时运算是浪费时间,寄希望于高考会有奇迹出现.这是十分有害的.我们必须清楚地认识到运算是一种能力和技能,必须从每一道题做起,坚持长期训练.要能够根据题设条件,合理运用概念、公式、法则、定理,提高运算的准确性.要注意算理,寻求与设计合理、简捷的运算途径,适当注意近似计算、估算、心算,提高运算速度.
3、抓教材回归和拓展
课本是考试内容的载体,是高考命题的依据,也是学生智能的生长点,是最有参考价值的资料.有相当多的高考试题是对课本中基本题目稍作变形得来的,其用意就是引导学生重视基础,切实抓好“三基”(基础知识、基本技能、基本方法).尤其是函数、导数、不等式、数列、直线与平面的位置关系、直线与圆锥曲线这些重点内容,要充分保证教学时间,狠下功夫、下足力气、深挖教材、适度拓展,讲练结合、反思到位、扎实高效.
(二)提高三个能力
提高能力,主要指:提高数值、符号运算能力;提高代数、几何推理能力;提高解决创新问题的能力。
1、提高数值、符号运算能力
数学符号是对数学问题的抽象和概括,提高数值、符号运算能力,才能加深对数学问题本质的理解;对较复杂的数值运算和抽象字母运算的训练,要经常接触,不能轻视,只有这样在平时的训练中积累经验、提升心理素质,在考场上才能操作有序,运算自如。
如今年理20、文理21都大量涉及字母运算,对考生的运算能力提出了高要求。
2、提高代数、几何推理能力
高考数学命题中,代数推理显得更为突出、更具考查性,要提高代数、几何的推理能力,这就要求我们在教学过程中,要着重研究问题解决的思维过程,培养、提高学生综合、分析问题的能力;在分析解决问题的过程中,构建知识的横向联系,养成多角度思考问题的习惯;当练习的题目达到一定量后,决定思维素质的因素就在于题目的质量和处理水平了,重视审题与解题后的总结、反思,不断积累正、反两个方面的经验,这是提高推理能力的有效途径。
3、提高解决创新问题的能力
在认真研究教材、《考试说明》的基础上,适当编拟命制一些新情境、新信息问题,如定义新概念、规定新运算、创造新知识、透视新热点、依托高观点、构造新函数,有利于培养学生阅读理解和分析问题、解决问题的能力,有利于创新意识的培养。
(三)实现三个转变
三个转变就是:变教师唱独角戏为全员参与;变孤立知识点为构建全面和谐的知识网络;变解题方法单一化为形成丰富的解题经验。
1、变教师唱独角戏为全员参与
真正实现学生为主体,教师为主导,发展为主旨
2、变孤立知识点为构建全面和谐的知识网络
立足三基,构建和谐的知识网络,是一切数学能力培养的先决条件
3、变解题方法单一化为形成丰富的解题经验
点(个例)——类(反映类型问题)——法(总结思想方法)——经验(形成)
(四)抓规范答题