专题一 集合、简单逻辑用语、函数、不等式、导数及应用
第1讲 集合与简单逻辑用语
1. 理解集合中元素的意义是解决集合问题的关键:弄清元素是函数关系式中自变量的取值,还是因变量的取值,还是曲线上的点,… 集合中元素的“三性”既是解题的突破口,也是检验所得字母取值(或范围)是否保留的依据.
2. 数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决.
3. 已知集合A、B,当A∩B=时,你是否注意到“极端”情况:A=或B=?求集合的子集时是否忘记?分类讨论思想的建立在集合这节内容学习中要得到强化.
4. 对于含有n个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n-1,2n-2;是任何集合的子集,是任何非空集合的真子集.
5. 命题逻辑联结词“或”“且”“非”与集合论中的“并”“交”“补”运算要进行类比理解,掌握解这类题的一般步骤与解题格式.
6. 学习本节内容,要侧重于语言(集合语言、数学符号语言)的转化,要强化数形结合、分类讨论、等价转化等数学思想方法在数学中的应用.