专题2数形结合思想
数与形是数学研究的两个重要方面,在研究过程中,数形结合既是一种重要的数学思想,又是一种常用的数学方法.数形结合是历年高考的重点和热点.数形结合包含“以形助数”和“以数辅形”两个方面,其中“以形助数”是其主要方面,其方法的关键是根据题设条件和探求目标,联想或构造出一个恰当的图形,利用图形探求解题途径,对于填空题可以简捷地直接获得问题的结果,对于解答题要重视数形转换的等价性论述,避免利用图形的直观性代替逻辑推理得到结果.“数缺形时少直观,形少数时难入微”,利用数形结合的思想方法可以深刻揭示数学问题的本质.函数的图象、方程的曲线、集合的韦恩图或数轴表示等,是“以形示数”,而解析几何的方程、斜率、距离公式、向量的坐标表示等则是“以数助形”,还有导数更是数形结合的产物,这些都为我们提供了“数形结合”的知识平台.
1.设命题甲:0<x<3,命题乙:|x-1|<4,则甲是乙成立的________条件.
解析:将两个命题用数轴表示,如图:从图中可以看出,命题甲是命题乙的充分