用户名: 密码:  用户登录   新用户注册  忘记密码  账号激活
您的位置:教学资源网 >> 学案 >> 数学学案
高中数学编辑
2013届数学竞赛教案讲义(14)——极限与导数
下载扣金币方式下载扣金币方式
需消耗2金币 立即下载
1个贡献点 立即下载
1个黄金点 立即下载
VIP下载通道>>>
提示:本自然月内重复下载不再扣除金币
  • 资源类别学案
    资源子类复习学案
  • 教材版本不限
    所属学科高中数学
  • 适用年级高三年级
    适用地区全国通用
  • 文件大小125 K
    上传用户stephen
  • 更新时间2013/1/25 16:07:09
    下载统计今日0 总计22
  • 评论(0)发表评论  报错(0)我要报错  收藏
0
0
资源简介
第十四章 极限与导数
一、基础知识
1.极限定义:(1)若数列{un}满足,对任意给定的正数ε,总存在正数m,当n>m且n∈N时,恒有|un-A|<ε成立(A为常数),则称A为数列un当n趋向于无穷大时的极限,记为 ,另外 =A表示x大于x0且趋向于x0时f(x)极限为A,称右极限。类似地 表示x小于x0且趋向于x0时f(x)的左极限。
2  极限的四则运算:如果 f(x)=a, g(x)=b,那么 [f(x)±g(x)]=a±b, [f(x)•g(x)]=ab,
3.连续:如果函数f(x)在x=x0处有定义,且 f(x)存在,并且 f(x)=f(x0),则称f(x)在x=x0处连续。
4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。

5.导数:若函数f(x)在x0附近有定义,当自变量x在x0处取得一个增量Δx时(Δx充分小),因变量y也随之取得增量Δy(Δy=f(x0+Δx)-f(x0)).若 存在,则称f(x)在x0处可导,此极限值称为f(x)

  • 暂时没有相关评论

请先登录网站关闭

  忘记密码  新用户注册