高三专题复习攻略(新课标)数学浙江理科第一部分专题五第一讲 直线与圆专题针对训练
一、选择题
1.已知直线x+a2y+6=0与直线(a-2)x+3ay+2a=0平行,则a的值为( )
A.0或3或-1 B.0或3
C.3或-1 D.0或-1
解析:选D.由直线x+a2y+6=0与直线(a-2)x+3ay+2a=0平行,得3a=a2(a-2),即a(a2-2a-3)=0,解得a=0或a=3或a=-1,经验证,当a=0或a=-1时,两直线互相平行.
2.点A(1,3)关于直线y=kx+b对称的点是B(-2,1),则直线y=kx+b在x轴上的截距是( )
A.-32 B.54
C.-65 D.56
解析:选D.由题意知3-11+2•k=-12=k•-12+b,解得k=-32,b=54,
∴直线方程为y=-32x+54,
其在x轴上的截距为-54×(-23)=56.
3.圆x2+y2-2x+4y-4=0与直线2tx-y-2-2t=0(t∈R)的位置关系为( )
A.相离 B.相切
C.相交 D.以上都有可能
解析:选C.∵圆的方程可化为(x-1)2+(y+2)2=9,∴圆心为(1,-2),半径r=3,又圆心在直线2tx-y-2-2t=0上,∴圆与直线相交,故选C.
4.若直线l与直线y=1,x=7分别交于点P,Q,且线段PQ的中点坐标为(1,-1),则直线l的斜率为( )
A.13 B.-13
C.-32 D.23
解析:选B.由直线l与直线y=1,x=7分别交于点P、Q,可设P(x1,1),Q(7,y1),再由线段PQ的中点坐标为(1,-1),可解得:x1=-5,y1=-3.即直线l上有两点P(-5,1),Q(7,-3),代入斜率公式可解得直线l的斜率为k=1+3-5-7=-13.故选B.
5.已知点P(x,y)在直线x+2y=3上移动,当2x+4y取