一、基础知识
不等式的基本性质:
(1)a>b a-b>0; (2)a>b, b>c a>c;
(3)a>b a+c>b+c; (4)a>b, c>0 ac>bc;
(5)a>b, c<0 ac(6)a>b>0, c>d>0 ac>bd;
(7)a>b>0, n∈N+ an>bn; (8)a>b>0, n∈N+ ;
(10)a, b∈R,则|a|-|b|≤|a+b|≤|a|+|b|;
(11)a, b∈R,则(a-b)2≥0 a2+b2≥2ab;
(12)x, y, z∈R+,则x+y≥2 , x+y+z
前五条是显然的,以下从第六条开始给出证明。
(6)因为a>b>0, c>d>0,所以ac>bc, bc>bd,所以ac>bd;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若,由性质(7)得,即a≤b,与a>b矛盾,所以假设不成立,所以;由绝对值的意义知(9)成立;-|a|≤a≤|a|, -|b|≤b≤|b|,所以-(|a|+|b|)≤a+b≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为|a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-2 ≥0,所以x+y≥,当且仅当x=y时,等号成立,再证另一不等式,令,因为x3+b3+c3-3abc =(a+b)3+c3-3a2b-3ab2-3abc =(a+b)3+c3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca)= (a+b+c)[(a-b)2+(b-c)2+(c-a)2] ≥0,所以a3+b3+c3≥3abc,即x+y+z≥,等号当