用户名: 密码:  用户登录   新用户注册  忘记密码  账号激活
您的位置:教学资源网 >> 试卷 >> 数学试卷
高中数学编辑
数学奥林匹克竞赛讲义:09第九章 不等式
下载扣金币方式下载扣金币方式
需消耗2金币 立即下载
1个贡献点 立即下载
1个黄金点 立即下载
VIP下载通道>>>
提示:本自然月内重复下载不再扣除金币
  • 资源类别试卷
    资源子类竞赛试题
  • 教材版本不限
    所属学科高中数学
  • 适用年级高中不限
    适用地区全国通用
  • 文件大小486 K
    上传用户stephen
  • 更新时间2012/7/10 14:29:11
    下载统计今日0 总计110
  • 评论(0)发表评论  报错(0)我要报错  收藏
1
0
资源简介
一、基础知识
不等式的基本性质:
(1)a>b a-b>0      (2)a>b, b>c a>c
(3)a>b a+c>b+c; (4)a>b, c>0 ac>bc
(5)a>b, c<0 ac(6)a>b>0, c>d>0 ac>bd;
(7)a>b>0, n∈N+ an>bn;   (8)a>b>0, n∈N+ ;
(9)a>0, |x| -aa x>a或x<-a;
(10)a, b∈R,则|a|-|b|≤|a+b|≤|a|+|b|;
(11)a, b∈R,则(a-b)2≥0 a2+b2≥2ab;
(12)x, y, z∈R+,则x+y≥2 , x+y+z
前五条是显然的,以下从第六条开始给出证明。

(6)因为a>b>0, c>d>0,所以ac>bc, bc>bd,所以ac>bd;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若,由性质(7)得,即a≤b,与a>b矛盾,所以假设不成立,所以;由绝对值的意义知(9)成立;-|a|≤a≤|a|, -|b|≤b≤|b|,所以-(|a|+|b|)≤a+b≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为|a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-2 ≥0,所以x+y≥,当且仅当x=y时,等号成立,再证另一不等式,令,因为x3+b3+c3-3abc =(a+b)3+c3-3a2b-3ab2-3abc =(a+b)3+c3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca)= (a+b+c)[(a-b)2+(b-c)2+(c-a)2] ≥0,所以a3+b3+c3≥3abc,即x+y+z≥,等号当

  • 暂时没有相关评论
精品专题

请先登录网站关闭

  忘记密码  新用户注册