★知识梳理
1.我们学习过的基本初等函数主要有:一次函数、二次函数、正(反)比例函数、三角函数、指数函数、对数函数、幂函数等,我们要熟练掌握这些函数的图象与性质,以便利用它们来解决一些非基本函数的问题。
2.用基本初等函数解决非基本函数问题的途径:
(1)化整为零:即将非基本函数“拆”成基本初等函数,以便用已知知识解决问题;
(2)图象变换:某些非基本函数的图象可看成是由基本初等函数图象通过图象变换得到的,如果搞清了变换关系,便可借助基本初等函数解决非基本函数的问题。
3.函数的性质主要:周期性、有界性、单调性、奇偶性等,灵活运用这些性质,可以解决方程、不等式方面的不少问题。
4.在解决某些应用问题时,通常要用到一些函数模型,它们主要是:一次函数模型、
二次函数模型、指数函数模型、对数函数模型、幂函数模型、分式函数模型、分段函数模型等。
★重、难点突破
重点:掌握一次函数、二次函数、指数函数、对数函数等基本初等函数模型;培养阅读理解、建立数学模型和分析问题、解决问题的能力掌握解函数应用问题的基本步骤。
难点:建立数学模型和分析问题、解决问题的能力的培养。