1.[2021·全国乙卷]在直角坐标系xOy中,⊙C的圆心为C(2,1),半径为1.
(1)写出⊙C的一个参数方程;
(2)过点F(4,1)作⊙C的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.
2.[2021·全国甲卷]在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ.
(1)将C的极坐标方程化为直角坐标方程;
(2)设点A的直角坐标为(1,0),M为C上的动点,点P满足=,写出P的轨迹C1的参数方程,并判断C与C1是否有公共点.
3.[2022·陕西咸阳考试]在平面直角坐标系中,曲线C1的参数方程为(θ为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρsin=.
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)若点P(0,1),曲线C2与曲线C1的交点为A,B(异于点O)两点,求+的值.