知识梳理
1.复数的有关概念
(1)复数的定义:形如a+bi(a,b∈R)的数叫做复数,其中a是实部,b是虚部,i为虚数单位.
(2)复数的分类:
复数z=a+bi(a,b∈R)
(3)复数相等:
a+bi=c+di⇔a=c且b=d(a,b,c,d∈R).
(4)共轭复数:
a+bi与c+di互为共轭复数⇔a=c,b=-d(a,b,c,d∈R).
(5)复数的模:
向量的模叫做复数z=a+bi的模或绝对值,记作|a+bi|或|z|,即|z|=|a+bi|=(a,b∈R).
2.复数的几何意义
(1)复数z=a+bi(a,b∈R)复平面内的点Z(a,b).
(2)复数z=a+bi(a,b∈R)平面向量.
3.复数的四则运算
(1)复数的加、减、乘、除运算法则:
设z1=a+bi,z2=c+di(a,b,c,d∈R),则
①加法:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i;
②减法:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i;
③乘法:z1·z2=(a+bi)·(c+di)=(ac-bd)+(ad+bc)i;
④除法:===+i(c+di≠0).
(2)几何意义:复数加、减法可按向量的平行四边形或三角形法则进行.