1.直线与椭圆的位置判断
将直线方程与椭圆方程联立,消去y(或x),得到关于x(或y)的一元二次方程,则直线与椭圆相交⇔Δ>0;直线与椭圆相切⇔Δ=0;直线与椭圆相离⇔Δ<0.
2.弦长公式
设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),
则|AB|=|x1-x2|=
或|AB|=|y1-y2|=,k为直线斜率且k≠0.
常用结论
已知椭圆+=1(a>b>0).
(1)通径的长度为.
(2)过左焦点的弦AB,A(x1,y1),B(x2,y2),则焦点弦|AB|=2a+e(x1+x2);过右焦点弦CD,C(x3,y3),D(x4,y4),则焦点弦|CD|=2a-e(x3+x4).(e为椭圆的离心率)
(3)A1,A2为椭圆的长轴顶点,P是椭圆上异于A1,A2的任一点,则.
(4)AB是椭圆的不平行于对称轴的弦,O为原点,M为AB的中点,则kOM·kAB=-.
(5)过原点的直线交椭圆于A,B两点,P是椭圆上异于A,B的任一点,则kPA·kPB=-.
(6)点P(x0,y0)在椭圆上,过点P的切线方程为+=1.