1.设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是( )
A.4 B.6
C.8 D.12
解析:选B 由抛物线的方程得==2,再根据抛物线的定义,可知所求距离为4+2=6.
2.(2020·北京高考)设抛物线的顶点为O,焦点为F,准线为l,P是抛物线上异于O的一点,过P作PQ⊥l于Q.则线段FQ的垂直平分线( )
A.经过点O B.经过点P
C.平行于直线OP D.垂直于直线OP
解析:选B 连接PF(图略),由题意及抛物线的定义可知|PQ|=|FP|,则△QPF为等腰三角形,故线段FQ的垂直平分线经过点P.故选B.
3.(多选)设抛物线y2=2px(p>0)的焦点为F.点M在y轴上,若线段FM的中点B在抛物线上,且点B到抛物线准线的距离为,则点M的坐标为( )
A.(0,-4) B.(0,-2)
C.(0,2) D.(0,4)