1.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是( )
A.+=1 B.+=1
C.+=1 D.+=1
解析:选D 右焦点为F(1,0)说明两层含义:椭圆的焦点在x轴上;c=1.又离心率为=,故a=2,b2=a2-c2=4-1=3,故椭圆的方程为+=1.
2.已知椭圆+=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P,若=2,则椭圆的离心率是( )
A. B.
C. D.
解析:选D 如图,∵=2,∴OA=2OF,∴a=2c,∴e=.
3.F是椭圆的左焦点,A,B分别是其在x轴正半轴和y轴正半轴的顶点,P是椭圆上一点,且PF⊥x轴,OP∥AB,那么该椭圆的离心率为( )
A. B.
C. D.