1.已知a=(1,-2,1),a-b=(-1,2,-1),则b=( )
A.(2,-4,2) B.(-2,4,-2)
C.(-2,0,-2) D.(2,1,-3)
解析:选A b=a-(a-b)=(1,-2,1)-(-1,2,-1)=(2,-4,2).
2.已知a=(0,-1,1),b=(4,1,0),|λa+b|=,且λ>0,则λ=( )
A.2 B.3
C.4 D.5
解析:选B 由题意,得λa+b=(4,1-λ,λ).因为|λa+b|=,所以42+(1-λ)2+λ2=29,整理得λ2-λ-6=0.又λ>0,所以λ=3.
3.若向量a=(1,λ,2),b=(2,-1,2),且a与b的夹角的余弦值为,则λ=( )
A.2 B.-2
C.-2或 D.2或-
解析:选C 由cos 〈a,b〉===,
解得λ=-2或λ=.