1.下列命题中正确的是( )
A.若a与b共线,b与c共线,则a与c共线
B.向量a,b,c共面,即它们所在的直线共面
C.若两个非零空间向量与满足+=0,则∥
D.若a∥b,则存在唯一的实数λ,使a=λb
解析:选C A中,若b=0,则a与c不一定共线;B中,共面向量的定义是平行于同一平面的向量,表示这些向量的有向线段所在的直线不一定共面;C中,∵+=0,∴=-,∴与共线,故∥正确;D中,若b=0,a≠0,则不存在λ,使a=λb.
2.满足下列条件,能说明空间不重合的A,B,C三点共线的是( )
A.+= B.-=
C.= D.||=||
解析:选C 对于空间中的任意向量,都有+=,选项A错误;若-=,则+=,而+=,据此可知=,即B,C两点重合,选项B错误;=,则A,B,C三点共线,选项C正确;||=||,则线段AB的长度与线段BC的长度相等,不一定有A,B,C三点共线,选项D错误.