习题课4 动能定理的综合应用
[学习目标] 1.[物理观念]进一步理解动能定理,领会应用动能定理解题的优越性. 2.[科学思维]会利用动能定理分析变力做功、曲线运动以及多过程问题.
|
利用动能定理求变力的功
|
1.动能定理不仅适用于求恒力做功,也适用于求变力做功,同时因为不涉及变力作用的过程分析,应用非常方便.
2.利用动能定理求变力的功是最常用的方法,当物体受到一个变力和几个恒力作用时,可以用动能定理间接求变力做的功,即W变+W其他=ΔEk.
【例1】 如图所示,某人利用跨过定滑轮的轻绳拉质量为10 kg的物体.定滑轮的位置比A点高3 m.若此人缓慢地将绳从A点拉到同一水平高度的B点,且A、B两点处绳与水平方向的夹角分别为37°和30°,则此人拉绳的力做了多少功?(g取10 m/s2,sin 37°=0.6,cos 37°=0.8,不计滑轮的摩擦)
[解析] 取物体为研究对象,设绳的拉力对物体做的功为W.根据题意有h=3 m
物体升高的高度Δh=- ①
对全过程应用动能定理W-mgΔh=0 ②
由①②两式联立并代入数据解得W=100 J
则人拉绳的力所做的功W人=W=100 J.
[答案] 100 J
[跟进训练]
1.一质量为m的小球,用长为l的轻绳悬挂于O点.小球在水平力F作用下,从平衡位置P点很缓慢地移动到Q点,如图所示,则力F所做的功为( )
A.mglcos θ B.Flsin θ
C.mgl(l-cos θ) D.Flcos θ
C [小球的运动过程是缓慢的,因而任一时刻都可看成是平衡状态,因此F的大小不断变大,F做的功是变力功.小球上升过程只有重力mg和F这两个力做功,由动能定理得WF-mgl(1-cos θ)=0.所以WF=mgl(1-cos θ).]
|
利用动能定理分析多过程问题
|
一个物体的运动如果包含多个运动阶段,可以选择分段或全程应用动能定理.
1.分段应用动能定理时,将复杂的过程分割成一个个子过程,对每个子过程的做功情况和初、末动能进行分析,然后针对每个子过程应用动能定理列式,然后联立求解.
2.全程应用动能定理时,分析整个过程中出现过的各力的做功情况,分析每个力做的功,确定整个过程中合外力做的总功,然后确定整个过程的初、末动能,针对整个过程利用动能定理列式求解.
当题目不涉及中间量时,选择全程应用动能定理更简单,更方便.
【例2】 如图所示,ABCD为一竖直平面内的轨道,其中BC水平,A点比BC高出10 m,BC长1 m,AB和CD轨道光滑.一质量为1 kg的物体,从A点以4 m/s的速度开始运动,经过BC后滑到高出C点10.3 m的D点速度为0.求:(取g=10 m/s2)
(1)物体与BC轨道间的动摩擦因数;
(2)物体第5次经过B点时的速度;
(3)物体最后停止的位置(距B点多少米).
思路点拨:①重力做功与物体运动路径无关,其大小为mgΔh,但应注意做功的正、负.
②物体第5次经过B点时在水平面BC上的路径为4sBC.
[解析] (1)由动能定理得-mg(h-H)-μmgsBC=0-mv,解得μ=0.5.
(2)物体第5次经过B点时,物体在BC上滑动了4次,由动能定理得mgH-μmg·4sBC=mv-mv,
解得v2=4 m/s≈13.3 m/s.
(3)分析整个过程,由动能定理得
mgH-μmgs=0-mv,解得s=21.6 m.
所以物体在轨道上来回运动了10次后,还有1.6 m,故距B点的距离为2 m-1.6 m=0.4 m.
[答案] (1)0.5 (2)13.3 m/s (3)距B点0.4 m