1 传感器及其工作原理
[学习目标] 1.[物理观念]了解传感器的定义,感受传感器的应用技术在信息时代的作用与意义. 2.[科学思维]知道将非电学量转化为电学量的意义.(重点) 3.[科学思维]了解光敏电阻、热敏电阻和霍尔元件的性能、工作原理及作用.(重点、难点)
一、传感器
1.传感器的定义
能够感受诸如力、温度、光、声、化学成分等物理量,并能把它们按照一定的规律转换为便于传送和处理的另一个物理量(通常是电压、电流等电学量),或转换为电路的通断的元件.
2.非电学量转换为电学量的意义
把非电学量转换为电学量,可以方便地进行测量、传输、处理和控制.
3.注意
(1)传感器的发展十分迅速,其品种已达数万种,我们学习了解的只是最基本的几种而已.
(2)不能认为传感器输出的一定是电信号.
二、光敏电阻
1.特点:光照越强,电阻越小.
2.原因:光敏电阻的构成物质为半导体材料,无光照时,载流子极少,导电性能不好;随着光照的增强,载流子增多,导电性变好.
3.作用:把光照强弱这个光学量转换为电阻这个电学量.
三、热敏电阻和金属热电阻
1.热敏电阻
热敏电阻由半导体材料制成,其电阻随温度的变化明显,温度升高电阻减小,如图甲所示为某一热敏电阻的电阻随温度变化的特性曲线.
甲 乙
2.金属热电阻
有些金属的电阻率随温度的升高而增大,这样的电阻也可以制作温度传感器,称为热电阻,如图乙所示为某金属导线电阻的温度特性曲线.
3.热敏电阻与金属热电阻的区别
|
热敏电阻
|
金属热电阻
|
特点
|
电阻随温度的变化而变化且非常明显
|
电阻率随温度的升高而增大
|
制作材料
|
半导体
|
金属导体
|
优点
|
灵敏度好
|
化学稳定性好,测温范围大
|
作用
|
能够将温度这个热学量转换为电阻这个电学量
|
4.注意:在工作温度范围内,电阻值随温度上升而增加的是正温度系数(PTC)热敏电阻器;电阻值随温度上升而减小的是负温度系数(NTC)热敏电阻器.
四、霍尔元件
1.构造:如图所示,在一个很小的矩形半导体(例如砷化铟)薄片上,制作四个电极E、F、M、N,就成为一个霍尔元件.
2.工作原理:在E、F间通入恒定的电流I, 同时外加与薄片垂直的磁场B,则薄片中的载流子就在洛伦兹力的作用下,向着与电流和磁场都垂直的方向漂移,使M、N间出现了电压,称为霍尔电压UH.
3.霍尔电压:UH=k.
(1)其中d为薄片的厚度,k为霍尔系数,其大小与薄片的材料有关.
(2)一个霍尔元件的d、k为定值,再保持I恒定,则UH的变化就与B成正比.
4.作用:把磁感应强度这个磁学量转换为电压这个电学量.
[说明] 霍尔电压的推导
设上图中MN方向长度为l2,则q=qvB.
根据电流的微观解释,I=nqSv,
整理后,得UH=.
令k=,则UH=k.
UH与B成正比,因此霍尔元件能把磁学量转换成电学量.