1.已知直线l1:mx+y-1=0与直线l2:(m-2)x+my-2=0,则“m=1”是“l1⊥l2”的( )
A.充分不必要条件 B.充要条件
C.必要不充分条件 D.既不充分也不必要条件
解析:选A.由l1⊥l2,得m(m-2)+m=0,解得m=0或m=1,所以“m=1”是“l1⊥l2”的充分不必要条件,故选A.
2.已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是( )
A.1或3 B.1或5
C.3或5 D.1或2
解析:选C.法一:由两直线平行得,当k-3=0时,两直线的方程分别为y=-1和y=,显然两直线平行.当k-3≠0时,由=≠,可得k=5.综上,k的值是3或5.
法二:当k=3时,两直线平行,故排除B,D;当k=1时,两直线不平行,排除A.