第2节 动量守恒定律及其应用
知识点一| 动量守恒定律的理解及应用
1.动量守恒的条件
(1)系统不受外力或所受外力之和为零时,系统的动量守恒。
(2)系统所受外力之和不为零,但当内力远大于外力时系统动量近似守恒。
(3)系统所受外力之和不为零,但在某个方向上所受合外力为零或不受外力,或外力可以忽略,则在这个方向上,系统动量守恒。
2.动量守恒定律的内容
如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变。
3.动量守恒的数学表达式
(1)p=p′(系统相互作用前总动量p等于相互作用后总动量p′)。
(2)Δp=0(系统总动量变化为零)。
(3)Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量增量大小相等,方向相反)。
(1)系统所受合外力的冲量为零,则系统动量一定守恒。 (√)
(2)动量守恒是指系统在初、末状态时的动量相等。 (×)
(3)物体相互作用时动量守恒,但机械能不一定守恒。 (√)
动量守恒定律的“五性”
矢量性
|
动量守恒定律的表达式为矢量方程,解题应选取统一的正方向
|
相对性
|
各物体的速度必须是相对同一参考系的速度(没有特殊说明要选地球这个参考系)。如果题设条件中各物体的速度不是相对同一参考系时,必须转换成相对同一参考系的速度
|
同时性
|
动量是一个瞬时量,表达式中的p1、p2…必须是系统中各物体在相互作用前同一时刻的动量,p′1、p′2…必须是系统中各物体在相互作用后同一时刻的动量,不同时刻的动量不能相加
|
系统性
|
研究的对象是相互作用的两个或多个物体组成的系统,而不是其中的一个物体,更不能题中有几个物体就选几个物体
|
普适性
|
动量守恒定律不仅适用于低速宏观物体组成的系统,还适用于接近光速运动的微观粒子组成的系统
|
[典例] 两磁铁各放在一辆小车上,小车能在水平面上无摩擦地沿同一直线运动。已知甲车和磁铁的总质量为0.5 kg,乙车和磁铁的总质量为1.0 kg。两磁铁的N极相对,推动一下,使两车相向运动。某时刻甲的速率为2 m/s,乙的速率为3 m/s,方向与甲相反。两车运动过程中始终未相碰。则:
(1)两车最近时,乙的速度为多大?
(2)甲车开始反向运动时,乙的速度为多大?
解析:(1)两车相距最近时,两车的速度相同,设该速度为v,取乙车的速度方向为正方向。由动量守恒定律得m乙v乙-m甲v甲=(m甲+m乙)v,所以两车最近时,乙车的速度为v== m/s= m/s≈1.33 m/s。
(2)甲车开始反向时,其速度为0,设此时乙车的速度为v乙′,由动量守恒定律得m乙v乙-m甲v甲=m乙v乙′,得v乙′== m/s=2 m/s。
答案:(1)1.33 m/s (2)2 m/s
应用动量守恒定律的解题步骤
(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程)。
(2)进行受力分析,判断系统动量是否守恒(或某一方向上是否守恒)。
(3)规定正方向,确定初、末状态动量。
(4)由动量守恒定律列出方程。
(5)代入数据,求出结果,必要时讨论说明。
考法1 动量守恒的判断及应用
1.(多选)如图所示,A、B两物体质量之比mA∶mB=3∶2,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,地面光滑,当弹簧突然释放后,则( )
A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成系统的动量守恒
B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成系统的动量守恒
C.若A、B所受的摩擦力大小相等,A、B组成系统的动量守恒
D.若A、B所受的摩擦力大小相等,A、B、C组成系统的动量守恒
BCD [如果A、B与平板车上表面间的动摩擦因数相同,弹簧释放后A、B分别相对小车向左、向右滑动,它们所受的滑动摩擦力FA向右,FB向左,由于mA∶mB=3∶2,所以FA∶FB=3∶2,则A、B组成系统所受的外力之和不为零,故其动量不守恒,A选项错误。对A、B、C组成的系统,A、B与C间的摩擦力为内力,该系统所受的外力为竖直方向的重力、支持力,它们的合力为零,故该系统的动量守恒,B、D选项正确。若A、B所受摩擦力大小相等,则A、B组成的系统受到的外力之和为零,故其动量守恒,C选项正确。]